Variable bandwidth kernel regression estimation
نویسندگان
چکیده
منابع مشابه
A variable bandwidth selector in multivariate kernel density estimation
Based on a random sample of size n from an unknown d-dimensional density f , the problem of selecting the variable (or adaptive) bandwidth in kernel estimation of f is investigated. The common strategy is to express the variable bandwidth at each observation as the product of a local bandwidth factor and a global smoothing parameter. For selecting the local bandwidth factor a method based on cl...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملVariable Bandwidth and Local Linear Regression Smoothers
In this paper we introduce an appealing nonparametric method for estimating the mean regression function. The proposed method combines the ideas of local linear smoothers and variable bandwidth. Hence, it also inherits the advantages of both approaches. We give expressions for the conditional MSE and MISE of the estimator. Minimization of the MISE leads to an explicit formula for an optimal cho...
متن کاملBandwidth Selection for Weighted Kernel Density Estimation
Abstract: In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation me...
متن کاملBayesian Approximate Kernel Regression with Variable Selection
Nonlinear kernel regression models are often used in statistics and machine learning due to greater accuracy than linear models. Variable selection for kernel regression models is a challenge partly because, unlike the linear regression setting, there is no clear concept of an effect size for regression coefficients. In this paper, we propose a novel framework that provides an analog of the eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Probability and Statistics
سال: 2021
ISSN: 1262-3318
DOI: 10.1051/ps/2021003